网页的本质就是超级文本标记语言,通过结合使用其他的Web技术(如:脚本语言、公共网关接口、组件等),可以创造出功能强大的网页。因而,超级文本标记语言是万维网(Web)编程的基础,也就是说万维网是建立在超文本基础之上的。超级文本标记语言之所以称为超文本标记语言,是因为文本中包含了所谓“超级链接”点。
本文实例讲述了随机矩阵。分享给大家供大家参考,具体如下:
随机矩阵(stochastic matrix)
最近一个月来一直在看Google排序的核心算法---PageRank排序算法[1][2],在多篇论文中涉及到图论、马尔可夫链的相关性质说明与应用[3][4][5],而最为关键,一直让我迷惑的一句话是"A stochastic matrix has principal/primary eigenvalue 1"[3][4][5][6][7][8]。可能对于系统学习过矩阵理论的人,它很平淡,不值得单独拿出来讨论或者说明。而我在此不得不承认自己的无知。尽管在高等代数中学习过关于矩阵性质的一些讨论,但从来没有接触过所谓的随机矩阵(Stochastic Matrix),更不要说其性质了。于是,我从网上努力的寻找相关文献,但结果不是特别理想,并没有关于随机矩阵的详细介绍以及相关性质的证明。我想也许一方面是我搜索技术还不成熟,或者是搜索的关键词不准确,亦或者是网上关于它的资料本就很缺乏。在这里我想将最近搜集的相关资料拿出来整理一下思路,以备将来之用,也是对自己学习的一个真实记录和督促。
随机矩阵实际上是非负矩阵(Nonnegative matrix)的一类,而非负矩阵是指矩阵元素都是非负(Nonnegative)的,当然非负要与正矩阵(Positive matrix)进行细微的区分。非负矩阵在计算数学、图论、线性规划、自动控制等领域有着广泛的应用,对其特征值,尤其是最大特征值(注意这里的最大是从模的角度或者说是绝对值概念上的最大)特征值,也就是矩阵的主特征值(principal/primary eigenvalue)的估计有很重要的意义[9]。
随机矩阵说来如此之重要,那么到底什么样的矩阵才是随机矩阵呢?假如随便给你一个非负矩阵,该如何判定它是否属于随机矩阵呢?
随机矩阵实际上应当分成行随机矩阵(Row stochastic matrix)和列随机矩阵(Column stochastic matrix)。行随机矩阵是指方阵的行和等于1;而列随机矩阵就是其列和等于1的非负矩阵。那么同时满足行和列和都是1的非负矩阵就是双随机矩阵(Double stochastic matrix),单位矩阵就是一种双随机矩阵。从研究的角度,其实只要研究行矩阵的性质即可,毕竟列随机矩阵只是行随机矩阵的转置矩阵。因此以下的讨论完全从行随机矩阵出发。
既然随机矩阵A行和为1,那么假设e=(1,1,...,1),则e的转置向量e',即是矩阵的一个特征向量,对应于A的特征值1。这样对于证明随机矩阵的主特征值是1还有一定的距离。假设A的n个特征值为λ(i),其中i=1,2,...,n;若要证明性质成立,则必须证明
关键词:随机矩阵( stochastic matrix)